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概要
周囲の環境に応じた移動をカーネルとのたたみこみによって表現した非局所移流項を持つモデ
ルが提案されている．モデルに対するパターン形成の議論はしばしば線形化安定性解析と数値計
算によって進められるが，それのみでは不十分であることが指摘されている．また，自明解が安
定なパラメータにおいても非自明解が存在しうることが数値的に報告されているが，この構造と
カーネル形状の関連は明らかになっていない．これらを踏まえて，本研究では局所分岐解析を用
いて分岐の存在を厳密に示し，縮約方程式から多重安定が生じうるカーネルの条件を整理した．
さらに数値分岐解析により多重安定性の存在を調べた結果を報告する．内容は長山雅晴氏，石井
宙志氏（北大）との共同研究に基づく．

1 はじめに
反応拡散方程式は化学反応や動物の体表など，自然界に見られる空間的なパターン形成の理解に広

く応用されてきた．代表的なパターン形成メカニズムとして，Turingにより提案された「拡散誘導
不安定性（Turing不安定性）」が挙げられる [1]．これは 2成分反応拡散系において，拡散を無視し
た常微分方程式系では一様定常解（自明解）が安定であっても，拡散の効果によってその自明解が不
安定化し，空間非一様なパターン（非自明解）が現れうるというものである．拡散に起因するものに
限らず，方程式のあるパラメータを変化させ自明解が不安定した際に非自明解が現れる構造が知られ
ており，一般に Turing分岐と呼ばれる．
反応拡散系では個体や物質の移動はランダムなものとして拡散項によって表される．しかし実際に

は周囲の環境から影響を受けて方向性を持った移動が発生する状況も考えられる．非局所移流項はそ
のような非局所相互作用に基づいた移動を表現する項である．この項が導入された代表例として，細
胞接着の効果を非局所移流として表現した APSモデルが挙げられる [2]．これは反応拡散方程式と組
み合わせたモデルとなっており，後に改良を経て，細胞集団で見られる実験事実を数値的に再現でき
ることが報告された [3]．近年では動物の群れ形成やゼブラフィッシュの色素細胞で見られる相互作
用など様々な現象の理論解析に応用されている．代表的な非局所移流方程式として

ut = −∇·
(
u∇(K ∗ u)

)
(1)
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が挙げられる．ただしK ∗ uはたたみこみで

(K ∗ u)(t, x) :=
∫
R
K(x− y)u(t, y) dy

であり，K はカーネルと呼ばれる．この方程式や関連するモデルは生物学的仮定によるモデリング
[2]，粒子モデルの極限 [4]，走化性モデルの縮約 [5]など様々な方法で得ることができる．中でも粒子
モデルによる導出はカーネルの形状による移流の効果の特徴づけを理解する上で重要であるため，簡
潔に紹介する．粒子モデルを

E [(x1, x2, . . . , xM )] = − 1

2M2

∑
i ̸=j

K(|xi − xj |) (2)

の勾配流によって定める．ただし

xi(t) = (xi,1(t), · · · , xi,n(t)) ∈ Rn (i = 1, 2, . . . ,M)

はM 個の粒子の時刻 tにおける位置であり，カーネルK は球対称関数である．得た粒子モデルに対
してM → ∞の極限を考えると非局所移流方程式が得られる [4]．したがって，(1)は粒子が E を減
少させる距離に配置される運動を表す方程式と考えることができる．例えばカーネルが原点からの距
離に関して単調減少な場合，E を最小化する 2粒子間の距離は 0となり，粒子同士が接近する効果を
表すカーネルとなる．以降そのような効果を「凝集」と表現する．また，粒子同士が遠ざかる効果を
「反発」と表現する．さらに，カーネルの形状によって現れるパターンが変化することが報告されて
おり，カーネルの性質が解構造やパターンに与える影響を理解することは重要である [3]．
本研究では空間 1次元における非局所移流項を持つ次の方程式を考える：

ut = duxx − [u(K ∗ u)x]x + cu(1− u) (t > 0, x ∈ I). (3)

u = u(t, x) ∈ R は時刻 t，位置 x における個体密度に対応する．I := [0, L) で，周期境界条件を
課す．d, c はともに正の定数で，カーネル K は偶関数 J ∈ L1(R) とパラメータ k > 0 を用いて
K(x) = kJ(x)として定める．I 上におけるたたみこみは次のように定義する：

(K ∗ u)(t, x) :=
∑
j∈Z

∫
I

K(x− y − jL)u(t, y) dy (x ∈ I). (4)

方程式 (3)や類似したモデルにおいて，Turing分岐の存在についてはしばしば自明な定常解まわ
りでの線形化安定性解析と数値実験により議論される．しかし，自明解の不安定化のみでは安定非自
明解の存在は保証されないことが指摘されている [6]．実際に空間パターンが現れる，すなわち安定
非自明解が現れることを調べるには「分岐の存在」と「非自明解の安定性」を調べる必要がある．さ
らに Jewellら [7]は空間 2次元において，自明解が安定なパラメータ領域であっても時空間パターン
が現れる「多重安定性 (Multistability)」の存在を数値的に示唆しているが，反応項を持つモデルで
はカーネルの形状と多重安定性の関係については議論が進んでいない．この現象が起こりうる構造と
して，我々は亜臨界分岐の発生に注目した．これは自明解が不安定化した際に，自明解が安定なパラ
メータ領域に不安定な非自明解が現れる分岐であり，現れた不安定非自明解が再び安定性を回復すれ
ば多重安定が達成される．また，亜臨界分岐が起きる条件は分岐点近傍における解析によって調べる



ことが可能である．以上を踏まえて本研究の目的は，方程式 (3)に対して亜臨界分岐とカーネル形状
の関係を整理し，どのような多重安定性が存在するかを明らかにすることである．亜臨界分岐とカー
ネル形状の関係は局所分岐解析に基づいて解析的に議論し，多重安定性については数値分岐解析を用
いて検証する．
次節から主結果を紹介する．2節では (i)定常解の分岐の存在 (ii)自明解が不安定化する分岐点近

傍における縮約方程式の導出 (iii)分岐の向きに関する条件に関する結果を順に紹介し，3節で数値分
岐解析による多重安定性の存在の検証について紹介する．最後にまとめと課題を述べる．

2 主結果 1：定常解の分岐
この節では分岐点近傍において解析的に得られた結果について述べる．以降は方程式 (3)において

カーネルに含まれる k > 0を分岐パラメータとする．

2.1 分岐の存在
自明解に関して，u = 0は常に不安定であるため以降 u = 1のみに注目する．(3)は u = 1 + w と

おくと

wt = dwxx − cw − cw2 − k(J ∗ wxx)− k[w(J ∗ w)x]x =: H(k,w) (5)

と書き換えられる．特に線形部分を作用素 L : H2
per(I) → L2

per(I)として

Lw := dwxx − cw − k(J ∗ wxx) (6)

と定め，Lの固有値問題 Lw = λw を考える．フーリエ級数展開：

u(t, x) =
∑
n∈Z

un(t)e
iσnx, σn =

2πn

L

を適用すると

Lw =
∑
n∈Z

{
(−d+ kĴ(σn))σ

2
n − c

}
wne

iσnx =:
∑
n∈Z

λn(k)wne
iσnx (7)

が得られる．ただし，Ĵ は J のフーリエ変換で

Ĵ(ξ) :=

∫
R
J(x)e−iξxdx

である．J は偶関数であるため Ĵ が実数値偶関数である．また，レゾルベントの構成により Lのス
ペクトル集合は {λn(k)}n≥0 であることがわかる．このとき，u = 1からの分岐の存在に対応する次
の定理を得た：

定理 1. 定数 d, c > 0に対して k∗ > 0とある自然数 N が存在し，自然数 nに対して

λn(k
∗) = (−d+ k∗Ĵ(σn))σ

2
n − c

{
= 0 if n = N,

̸= 0 if n ̸= N
(8)



が成り立つと仮定する．このとき，(k,w) = (k∗, 0)は

H(k,w) = dwxx − cw − cw2 − k{J ∗ wxx + (w(J ∗ w)x)x} = 0

の分岐点であり，この近傍で非自明解が存在する．

■証明の概略 関数空間を

X := {u ∈ H2
per(I) | u(x) = u(L− x), x ∈ I },

Y := {u ∈ L2
per(I) | u(x) = u(L− x), x ∈ I }

と定め，X から Y の作用素を

L1w = dwxx − cw, L2w = J ∗ wxx, N1(w) = −cw2, N2(w) = (w(J ∗ w)x)x

によって定義する．このとき H : R×X → Y は

H(k,w) = L1w +N1(w)− k(L2w +N2(w))

と表せる．線形作用素 L1 − kL2 は自己共役作用素であり，非線形項に関してNi(0) = 0, DNi(0) =

0 (i = 1, 2)が成り立つ．ただしDNi(w)はNi(w)の Fréchet微分である．さらに関数空間の設定か
ら L1 − kL2 に関して

dimKer(L1 − k∗L2) = codimRange(L1 − k∗L2) = 1

が成り立ち，像は

Range(L1 − k∗L2) =

{
w ∈ Y

∣∣∣∣ ∫
I

w(x) cos(σNx) dx = 0

}
として表される．以上よりH(k,w) = 0に対して (k∗, 0)において Crandall-Rabinowitzの定理を適
用できる． □

この定理によって非自明解の存在が保証される．より詳しく分岐点近傍のダイナミクスを調べるた
めに，次節で分岐点近傍の縮約方程式を導出する．

2.2 中心多様体縮約
特に u = 1が初めに不安定化する分岐点に注目するため，次を仮定する：

λn(k
∗) = (−d+ k∗Ĵ(σn))σ

2
n − c

{
= 0 if n = N,

< 0 if n ̸= N.
(9)

N モードは線形化では安定性を判断できない中立成分であるため，N モードのダイナミクスによっ
て非自明解の安定性が決まる．ここで有効な手法が中心多様体縮約である [9]．方程式 (5)が縮約可
能であるためには，非線形項に関する仮定と線形作用素 (6)に関する仮定：

• スペクトル集合のうち，実部 0のものが重複度をこめて有限個であり，虚軸に収束する列が存
在しない



• ある ω0, c > 0が存在して，|ω| ≥ ω0 を満たす任意の実数 ω に対して次が成り立つ：

∥(iωI− L)−1∥L(Y ) ≤
c

|ω|

を満たす必要がある．非線形項に関する仮定は前節において示されたものである．線形作用素に関す
る仮定は自己共役性と，スペクトル集合が {λn(k)}n≥0 であることから直ちに満たされる．したがっ
て方程式 (5)は仮定 (9)の下で縮約可能であり，中立固有値 λN に対応する固有関数の振幅 wN に関
する次の縮約方程式が得られた：ある δ > 0に対して wN = O(δ), |k − k∗| = O(δ2)の範囲で

ẇN = λN (k∗)wN + µw3
N +O(δ4), µ = −2(dσ2

N − c)− 2dσ2
N + c

2λ2N

(
λ2N + 2dσ2

N − 5c
)
.

よって，u = 1が始めに不安定化するとき発生する分岐は Pitchfork分岐である．Pitchfork分岐は
3次の係数 µの符号によって超臨界と亜臨界の 2種類に分類される．本研究で興味があるのは多重安
定性が存在しうる条件，すなわち亜臨界分岐が生じるカーネルの条件である．次の節で具体的にこの
条件を整理する．

2.3 亜臨界分岐の条件
自明解が初めに不安定化する分岐が亜臨界になる条件 µ > 0をカーネルのフーリエ変換を含んだ

形に書き換えると，次の不等式が得られた：

10(dσ2
N )2 + dσ2

Nc+ c2

6
< (2dσ2

N − c)(dσ2
N + c)

Ĵ(σ2N )

Ĵ(σN )
. (10)

この不等式を成立させるカーネルの設定を考える．

α := dσ2
N > 0, R :=

Ĵ(σ2N )

Ĵ(σN )

と置くと，不等式は

0 < 2(6R− 5)α2 + (6R− 1)cα− c2(6R+ 1) =: F (α) (11)

と表せる．この不等式を満たす条件は次の 2通りに整理できる：

(i) 6R− 5 ≥ 0を満たすカーネルで，ある Ñ モードより大きいモードが初めに不安定化する；
(ii) R < − 1

6 , R+ ≤ R < 5
6 を満たすカーネルで，ある範囲に含まれるモードが初めに不安定化する．

ただし R+ は方程式 F (α) = 0の判別式を D(R)とするとき，D(R) = 0の正の解である．よって，
初めに不安定化するモードとその 2倍のモードにおけるフーリエ変換の比を制御することで亜臨界分
岐をもたらすカーネルを構成できる．具体的なカーネルの構成例は後述することにし，次節ではカー
ネルの変形によって亜臨界分岐の条件が満たされる例について示した命題を紹介する．

2.4 亜臨界分岐をもたらすカーネルの変形
分岐の向きを変化させるカーネルの変形の 1例として次の命題を示した：



命題 1. J ∈ L1(R)は Ĵ(0) > 0かつ Ĵ(0) > Ĵ(ξ) (ξ ≠ 0)を満たす偶関数とする．カーネルを

K(x; b) =
k

b
J
(x
b

)
と定めるとき，十分小さい b では u = 1 が不安定化するときに起きる Pitchfork 分岐は亜臨界に
なる．

■証明の概略 与えたカーネルでは，亜臨界分岐の条件 (10)は

10(dσ2
N(b))

2 + dσ2
N(b)c+ c2

6
< (2dσ2

N(b) − c)(dσ2
N(b) + c)

Ĵ(bσ2N(b))

Ĵ(bσN(b))
(12)

となる．まず，b → +0 で初めに不安定化するモード N(b) が発散することを示す．このとき，不
等式 (12) の両辺で支配的になるのは σ2

N(b) の項である．特に右辺にあらわれるフーリエ変換の比
（R(b)とする）が b → +0で 5/6より大きい定数に収束すれば，不等式両辺の σ2

N(b) の係数の比較に
より不等式の成立を示すことができる．実際に bσN(b) → 0すなわち R(b) → 1を示すことができ，
この議論が成立する． □

亜臨界分岐の条件 (10)は分岐点近傍における分岐の向きに関する条件であり，実際に多重安定な
パラメータ領域が存在するかどうかは判断できない．このような場合に，分岐点から離れた非自明解
の安定性および非自明解の追跡が可能な数値分岐解析が有効である．実際に条件を満たす複数のカー
ネルに対して数値分岐解析を行なった結果について次節で紹介する．

3 主結果 2：数値分岐解析
数値分岐計算は [10]の手法を参考に Juliaで実装した．数値計算では，方程式 (3)にフーリエ級数

展開を適用して得られるフーリエモードの常微分方程式系：

u̇n = (−dσ2
n + c)un(t) +

∑
m∈Z

(kσnσn−mĴ(σn−m)− c)um(t)un−m(t) (n ∈ Z)

を有限で打ち切ったものを用いた．この節では命題 1の条件を満たす Gaussianに対して変形を行う
ことで得られた亜臨界分岐の分岐図，さらに (10)を満たす 2つの条件のうち一方を満たすカーネル
で得られた分岐図を紹介する．分岐図とは，横軸をパラメータ k として各 k における解の情報を縦
軸にプロットしたものである．各パラメータで存在する解の個数や特徴，その安定性を知ることが
できる図となっている．今回縦軸は定常解においてはフーリエモードから容易に計算可能な L2 ノル
ム，周期解では 1周期における L2 ノルムの最大値とした．また，一般的に微分方程式の時間発展を
数値的に求めた場合には不安定な解は観測されにくい．さらに多重安定性が存在する場合には収束先
が初期値に依存するため，他の安定解を見落としやすい．一方，数値分岐計算は解を連続的に追跡で
きるためこれらの困難を緩和でき，解構造を把握する上で有効である．

■Gaussianの分岐図 凝集を表すカーネルである Gaussian：

K(x; b) =
k

b
J
(x
b

)
=

k√
2πb

e−
x2

2b2



を用いて亜臨界分岐の条件を満たすパラメータで見られた 2種類の分岐図が図 1である．b = 0.1の
場合（図 1a），k = 1.15付近では安定な自明解と非自明解，不安定な非自明定常解が存在しており，
多重安定であることがわかる．安定定常解の代表例を図 1cに示す．さらに少し k を大きくすると安
定な自明解と周期解，不安定な非自明定常解が存在する領域が存在しており，定常解と周期解の多重
安定性が存在することがわかる．そこで現れる安定な周期解は，図 1eに示すように縦に振動する解
である．この分岐図から，局所的に強く凝集する効果を持つカーネルでは一様状態が不安定化すると
すぐ大きい振動が現れうることが示唆される．一方で b = 0.075（図 1b）の亜臨界分岐で現れる非自
明定常解は自明解と多重安定にならず，初めの分岐点から離れた k = 1.45付近の Hopf分岐により安
定性を回復する．この Hopf分岐から現れる周期解は k を減少させる方向へ辿っていくと他の Hopf

分岐に合流することなく途切れている．途切れるパラメータ付近に注目すると，時間変化がほとんど
ない状態と急激に変化する状態を繰り返す特徴が見られた．ここで，周期解の縦軸を「1周期の間で
最も時間変化が小さいときの解の L2 ノルム」に変えた場合の分岐図を作成したところ，周期解の枝
の途切れる部分が不安定定常解に向かって伸びているような図が得られた（図 2a）．また，図 2bに
示すように，不安定定常解に近づくと急激に周期が増加している．これらの考察から b = 0.075では
ホモクリニック分岐によって周期解が消滅したことが示唆される．

Hopf

Saddle-node

Pitchfork

Hopf

↑

↑
(d)

(c)

↑(e)

(a) b = 0.1

Hopf

Saddle-node

Pitchfork

(b) b = 0.075

(c) (d) (e)

図 1: (a)Gaussian で b = 0.1 のときに得られた分岐図．(b)b = 0.075 のときに得られた分岐図．緑は自明
解，赤は非自明定常解で実線は安定，点線は不安定を表す．青い四角は分岐点を表す．黄色の実線は安定な周
期解を表し，縦軸は 1 周期の L2 ノルムにおける最大値である．パラメータは 1 モードが初めに不安定化する
d = c = 1.0, L = 2.0．(c)-(e)はそれぞれ (a)の矢印 (c)-(e)に対応する解でそれぞれ k = 1.15, 1.2, 1.153．



(a) (b)

図 2: (a)は Gaussianで b = 0.075において見られる周期解が途切れるパラメータ近傍の分岐図．緑は自明解，
赤は非自明定常解で実線は安定，点線は不安定を表す．黄色の実線は安定な周期解を表し，縦軸は 1周期で時間
変化が最小となるときの L2 ノルムである．(b)はパラメータ k の変化に伴う周期解の周期の変化．

■R < − 1
6 を満たすカーネルにおける分岐図 カーネルとして

J(x) = a1G(x) cos(σNx) + a2G(x) cos(σ2Nx), G(x) =
1√
2πb

e−
x2

2b2 (13)

において a1 = 1.0, a2 = −4.0, b = 2.5, N = 2としたものに対しても分岐図を作成した．このカーネ
ルは先ほどの例と異なり反発の効果を持つ．パラメータを d = 0.05, c = 1.0, L = 10.0として得られ
た分岐図が図 3である．広い領域で多重安定性が達成されており，3つの定常解が多重安定となる領
域が見られた．典型的な定常解は図 4に示した．

Pitchfork

Saddle-node

Pitchfork

Pitchfork

Saddle-node

Saddle-node

↑

↑

(a)

(b)

図 3: カーネル (13)で a1 = 1.0, a2 = −4.0, b = 2.5, N = 2とした場合の分岐図．緑は自明解，赤は非自明定
常解で実線が安定，点線が不安定を表す．青い四角は分岐点を表す．パラメータは d = 0.05, c = 1.0, L = 10.0

とした．矢印に対応する定常解は図 4に示した．



(a) (b)

図 4: カーネル (13) で a1 = 1.0, a2 = −4.0, b = 2.5, N = 2 とした場合の安定定常解．(a) は Saddle-node

分岐に挟まれた安定定常解で，図 3の矢印 (a)が指す点に対応する．(b)は分岐図下部の安定定常解で，図 3の
矢印 (b)が指す点に対応する．パラメータは d = 0.05, c = 1.0, L = 10.0とした．

4 まとめ
方程式 (3)に対して，カーネルK(x) = kJ(x)が持つパラメータ kの変化により Pitchfork分岐が

生じ，非自明解が現れることを厳密に示した．さらに縮約方程式から亜臨界分岐をもたらすカーネル
と初めに不安定化するモードに関する条件を整理し，ある変形によってその条件が満たされることを
示した．多重安定性は数値分岐解析によっていくつかのカーネルに対して存在を確かめることができ
た．特に凝集を表すカーネルでは自明解と周期解が多重安定となる例が見られ，反発の効果を持つ
カーネルでは 3つの定常解が多重安定となる例が見られた．また，凝集を表すいくつかのカーネルで
分岐構造を比較したところ，亜臨界分岐で現れる非自明定常解の構造が似ていた．よって，その構造
に関わる共通の指標を持つことが期待される．命題によって与えた変形は相互作用の範囲を狭めるこ
とに対応することを踏まえ，非局所項を展開した近似：

(K ∗ u)(t, x) ≒ m0u(t, x)−
m2

2
uxx(t, x),

m0 :=

∫
R
K(x) dx,

m2 :=

∫
R
x2K(x) dx

を用いてモーメントに注目した考察を進めたいと考えている．また，[7]では空間次元によっても分
岐構造が変化しうることが指摘されているため，これまでの議論を 2次元に拡張可能かどうかを検討
することも今後の課題である．
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